
Let’s begin with a very gentle introduction to the foundations of topology, and by the 

end, we’ll use topology to show that there are infinitely many prime numbers. First, let’s pick 

our set, or our universe that we want to work in. We really only talk about integer primes, so 

consider Z, the set of all integers. From here on out, everything I talk about will be about Z. 

Topology is very concerned with studying subsets and their properties. So, we want to think 

about subsets of Z and how they work. 

 First, we need to think about infinite arithmetic sequences. The name might be 

intimidating, but we all know what these are. {…, -7, -4, -1, 2, 5, 8, 11, 14, …} is an example of 

an infinite arithmetic sequence. It’s a list of numbers where the difference between two 

consecutive numbers is always the same, and there are infinitely many numbers in the list. In the 

above example, you add 3 to get the next number, and of course you keep subtracting 3 to get the 

negative terms in the sequence. Z itself is also an infinite arithmetic sequence, because to get the 

next number, just add 1.  

 Now, back to topology. There are these rules called topological axioms that tell you 

whether or not subsets of Z are “nice.” I won’t explain what these axioms are to make things 

easier to understand, but just know that if subsets follow these axioms, then we can work with 

them. For example, let’s say I want to think about subsets of Z that only contain prime numbers. 

So, I want to think about sets such as {2, 5, 13} and {3, 5, 7, 11, 13, 31}, but I’m not interested 

in sets such as {-10, 3, 6}. If I want to see whether these subsets are “nice” subsets that I can 

work with, then I need to check that they satisfy the topological axioms. That’s how the axioms 

work.  

 So, what you do is you define which subsets of Z you want to think about (for example, 

subsets of Z which only contain negative numbers, or subsets of Z that contain the number 8, 

etc.) and you check if they satisfy the axioms or not. If a collection of subsets doesn’t satisfy the 

axioms, then you can’t work with them, and you have to think about some other subsets. If the 

collection of subsets does satisfy the axioms, then you call these subsets open. So, if you have a 

subset, which I’ll call X, and you say that X is open, what you’re saying is that X belongs to some 

collection of subsets that you’re thinking about, and this collection satisfies the axioms.  

 I know, it’s pretty abstract. If you’re a bit confused, reading the last two paragraphs a 

couple more times should help. I encourage you to not have doubts before you continue. And 

don’t worry about what the topological axioms are. I’ll say which collections of subsets satisfy 

the axioms and which don’t without explaining why, and you’ll have to trust me. (Although, if 

you’re particularly interested, you can look up what the axioms are!) 

 Now, we’re ready to explore the ideas of Furstenburg’s proof. Remember, we’re thinking 

about Z and subsets of Z. What we want to do is call a subset of Z an open set if it’s an infinite 

arithmetic sequence or a union of multiple infinite arithmetic sequences. For example, we say 

{…, -7, -4, -1, 2, 5, 8, 11, 14, …} is an open set, because it’s an infinite arithmetic sequence. Z 

itself is an open set, because Z is an infinite arithmetic sequence. The set {…, -12, -10, -8, -5, -4, 

0, 4, 5, 8, 10, 12, …} is open, because it is exactly the union of the sets {…, -12, -8, -4, 0, 4, 8, 

12, …} and {…, -10, -5, 0, 5, 10, …}, and both of these are infinite arithmetic sequences. 



However, {…, -3, -1, 1, 3, 5, 6, 7, 9, 11, …} is not an open set. It contains all of the odd 

numbers, which is an infinite arithmetic sequence, but it randomly has the number 6 in there, and 

6 isn’t a part of any infinite arithmetic sequence in that set. So that set is not open. We also are 

going to consider the empty set to be an open set, but that’s not too important, so don’t worry 

much about it. 

 One thing to take note of is that a non-empty finite set can’t be open, because a finite set 

can’t contain any infinite arithmetic sequences. The finite set {-4, -2, 0, 2, 4, 6, 8, 10} looks like 

it should be an open set, but it’s not. It’s an arithmetic sequence, but it’s not an infinite arithmetic 

sequence, so by our definition of what an open set is, that set isn’t open. We’ll use the fact that a 

finite set can’t be open later.  

 Remember that when we say a set is open, we’re saying that its collection satisfies the 

topological axioms. You’ll have to trust me that when we define open sets in this way (again, we 

say a set is open if it’s an infinite arithmetic sequence or a union of multiple arithmetic 

sequences), the axioms are satisfied. In other words, the collection of all subsets of Z that are 

infinite arithmetic sequences or unions of them satisfies the axioms. When Furstenburg wrote his 

proof, he had to, of course, prove that this collection satisfies the axioms, but we won’t here.  

 I’m repeating myself a lot, but it’s worth giving a quick summary to make sure we’re all 

on the same page. An infinite arithmetic sequence is an infinite sequence of integers where the 

difference between any two consecutive integers is the same. We’re thinking about subsets of Z 

that are infinite arithmetic sequences or a union of them. The collection of all of these subsets is 

a collection that satisfies the topological axioms. Because the collection satisfies the axioms, any 

subset in the collection is called an open set.  

 We’ve talked about sets that are open, so you might be wondering if there’s such a thing 

as a closed set. Yes, there is! But, it’s not what you think it is. First, let’s recall what the 

complement of a set is. Intuitively, the complement of a set A is everything except A, and will be 

denoted A
C
. But remember, here, everything is happening in Z. So for us, the complement of the 

odd integers is the even integers. The complement of {-3, 2, 5} is {…, -6, -5, -4, -2, -1, 0, 1, 3, 4, 

6, 7, 8, …}, and so on. 

 Now, we’re ready to talk about closed sets. We say that a set is closed if its complement 

is an open set. And, as you’d expect, a set is not closed if its complement is not open. It’s a 

strange definition, I know. Shortly, I’ll give lots of examples of closed and open sets to make the 

concept more clear. One thing to note is that “closed” is not the same thing as “not open.” We’ve 

seen what it means for a set to be open, and now we see what it means for a set to be closed. But 

it’s possible for a set to be both open and closed. It’s also possible for a set to be neither open nor 

closed! Let’s do some examples to make more sense of this. 

 Remember, to prove that there are infinitely many primes, we say that a subset of Z is 

open if it’s an infinite arithmetic sequence or the union of multiple arithmetic sequences. We saw 

earlier that the set {…, -12, -10, -8, -5, -4, 0, 4, 5, 8, 10, 12, …} is open, because it’s the union of 

the infinite arithmetic sequences {…, -12, -8, -4, 0, 4, 8, 12, …} and {…, -10, -5, 0, 5, 10, …}. 

So what about the set A = {…, -11, -9, -7, -6, -3, -2, -1, 1, 2, 3, 6, 7, 9, 11, …}? If you notice,    



A
C
 = {…, -12, -10, -8, -5, -4, 0, 4, 5, 8, 10, 12, …}, which is open, as we just saw. Therefore,     

A is closed because its complement is open. 

 As another example, consider the set {1, 2, 3, 4}. This set is not open, because it’s finite, 

so it doesn’t contain an infinite arithmetic sequence. So, consider the set B = {…, -3, -2, -1, 0, 5, 

6, 7, …}. Notice that B
C
 = {1, 2, 3, 4}, which is not open, as we just saw. Therefore, B is not 

closed, because its complement is not open.   

 So far, we’ve described some very basic topological concepts, such as open and closed 

sets. In order to make these concepts more clear, we’ve seen some examples of open, closed, not 

open, and not closed sets using the definition of “open” that Furstenburg used in his proof. 

Remember, you can define open sets however you want as long as they follow the axioms! And 

of course, the notion of being an infinite arithmetic sequence or a union of them is what 

Furstenburg decided to call “open.”  

 To give more perspective on where we’re going, I’ll mention now that Furstenburg’s 

proof is a proof by contradiction. We’re going to suppose that there are finitely many primes, and 

then, using concepts such as open and closed sets, arrive at a contradiction. Here’s how the proof 

is going to go: we’re going to consider a specific subset of Z, which for now I’ll call D, and 

we’re going to write D in two different ways. If we write the D one way, we’ll show that the D is 

closed. If we choose to write D in the other way, we’ll show that D is not closed. A set can’t be 

both closed and not closed, so this is a contradiction.  

 Before we get to the punch line, there are two crucial observations we need to make. The 

first observation is that if X is a non-empty subset of Z, and X is finite, X
C
 is not closed. Why? 

Remember how we mentioned that if X is finite, X cannot be open? That was because all open 

sets, by our definition, are infinite arithmetic sequences or a union of multiple infinite arithmetic 

sequences. So a finite set surely can’t satisfy this condition because all open sets are infinite. So, 

a finite set X is not open. Again, recall that a set is closed if its complement is open. Therefore, 

because X is not open, X
C
 is not closed.  

 The second observation has to do with sets that are both open and closed. Remember how 

we mentioned that it is possible for a set to be both open and closed? It turns out that an infinite 

arithmetic sequence is both open and closed! We’ve said many times that an infinite arithmetic 

sequence is an open set because that’s what we defined open sets to be! But now we need to see 

why it’s closed as well. 

 Consider the set H = {…, -9, -6, -3, 0, 3, 6, 9, …}. By our definition of open sets, H is 

open. But what is the complement of H? H
C
 = {…, -8, -7, -5, -4, -2, -1, 1, 2, 4, 5, 7, 8, …}. But 

notice that H
C
 is exactly equal to the union of {…, -8, -5, -2, 1, 4, 7, …} and {…, -7, -4, -1, 2, 5, 

8, …}. Notice that both of these are infinite arithmetic sequences! So, H
C
 is a union of infinite 

arithmetic sequences, so by our definition, H
C
 is open. Therefore, by the definition of a closed 

set, H is closed, because H
C
 is open. So, we have shown that H is both open and closed! This 

isn’t a proof, but it should convince you that an infinite arithmetic sequence is both an open and 

a closed set. If you’re not convinced, you’re encouraged to work out more examples.  



 There is one last fact we need, but I won’t prove that it’s true because it has to do with 

the topological axioms. You’ll have to take my word that it’s correct. If A1, A2, …, An are all 

closed sets, then the union of all of them is a closed set. So, the union of a finite number of 

closed sets is a closed set. This is a general fact that is easily proven if one knows the topological 

axioms.   

 Now, we’re ready to describe Furstenburg’s proof. One last time, let’s recap what we 

know about topology, so everything is fresh in our minds when we try to understand the proof. 

We said an open set is an infinite arithmetic sequence or a union of multiple infinite arithmetic 

sequences (and we’ll also say the empty set is open). Under this definition, the topological 

axioms are satisfied, so we actually are allowed to say that these sets are open. A set is closed if 

its complement is open. A non-empty, finite set cannot be open, because all non-empty open sets 

are infinite. Thus, the complement of a non-empty finite set cannot be closed. We also showed 

that in addition to being open by definition, an infinite arithmetic sequence is a closed set as 

well. Finally, we needed to mention that a union of a finite number of closed sets is closed. 

That’s everything we need. Here is Furstenburg’s proof of the infinitude of primes. 

 Consider the set D = Z \ {-1, 1}. In other words, D is the set of all integers except for 1 

and -1. {-1, 1} is a non-empty, finite set. Therefore, D, which is the complement of {-1, 1} 

cannot be closed, because D is the complement of a non-empty finite set. So we conclude that D 

is not closed. 

 We can write D in another way. Suppose by contradiction that there are finitely many 

primes. Let’s assume that there are n primes in total. By the Fundamental Theorem of 

Arithmetic, every integer except -1 and 1 can be written as a nonzero product of primes. So, 

consider the infinite arithmetic sequences that contain 0 and where you count by each prime 

number. So, for 2, which is a prime, consider the infinite arithmetic sequence A1 = {…, -6, -4, -2, 

0, 2, 4, 6, …}, and I call it A1 because 2 is the first prime. For the prime 3, consider the A2 = {-9, 

-6, -3, 0, 3, 6, 9, …}, and it’s denoted A2 because 3 is the second prime. Following the same 

pattern, A3 = {…, -15, -10, -5, 0, 5, 10, 15, …}, and so on. Do this for all n primes, creating the 

sets A1, A2, …, An. 

 The Fundamental Theorem of Arithmetic guarantees that every number except for -1 and 

1 appears on one of these lists. If an integer is a multiple of 3, it will appear in A2. If an integer is 

a multiple of 2, it will appear in A1. The key point is that because we know every integer except 1 

and -1 is either prime or has some prime factors, every integer except 1 and -1 is going to be 

somewhere in the collection of sets A1, A2, …, An. We assumed that there are n primes, so the sets 

A1, A2, …, An represent the infinite arithmetic sequences containing all of the n prime numbers. 

The union of all of these, as in, the union of A1, A2, …, An, contains every integer except 1 and -1.  

 But this is exactly the set D! Remember that D is the set of all integers except 1 and -1. 

Thus, D is exactly equal to the union of A1, A2, …, An. We showed that an infinite arithmetic 

sequence is actually a closed set. So, A1 is closed, A2 is closed, …, and An is closed. We also 

know that the union of a finite number of closed sets is closed. So, the union of A1, A2, …, An, 

which is D, is closed. Therefore, we conclude that D is closed.  



 We have shown that under the assumption that there are finitely many primes, the set     

D = Z \ {-1, 1} is both closed and not closed. This is a contradiction, so there are infinitely many 

primes. 

 


