Alright, so I'm not a math genius like X-Act or Dragontamer, but I wanted to figure out at which point in a defensive spread do base stats achieve their maximum defensive value.
To do this I used a fairly simple method using Base stats in increments of 10. For each 10 Base increment in HP, 5 was removed from defense and special defense.
I used 100/100/100 for my initial base.
BHP = Base HP
BDef = Base Defense
BSD = Base SD
AHP = Actual HP
ADef = Actual Defense
ASD = Actual SD
Total = Total Defenses
Difference = Difference from previous number.
Using 300 Base stats in Defenses, The point where diminishing returns occurs between 130/85/85 and 140/80/80.
There is basically no difference in a split EV's table with 252/124/124. In fact, diminishing returns appears to happen sooner by a small margin.
The point of diminishing returns is unchanged. It is still between 130/85/85 and 140/80/80.
Now for a fun experiment. Shuckle has the most base defenses invested of any pokemon, at a staggering 480.
Shuckle doesn't get diminishing returns on defenses until it hits 230 Base HP, with no EV investment.
It's the same number here, but notice the drastic difference in defense numbers between the two tables.
To get a more concrete number, I'll use the two from my experiments in relation to where there defenses are.
These are the diminishing returns numbers for actual stats:
196/421 = 0.608
286/601 = 0.467
These are the numbers that do not yet have diminishing returns:
206/401 = 0.514
296/581 = 0.509
My Hypothesis would be: Whenever you are creating or evaluating a defensive spread with a limited amount of points available for defenses, maximum durability is achieved when actual (not base) defenses are roughly 50% of actual (not base) HP.
In other words, the best overall defensive spread when you have 300 preset points to alocate is (roughly) 140/80/80.
If you wanted the bulkiest possible pokemon with only 200 points to allocate, start with the total Base Stats Vs. Base HP stats provided here.
220/480 = 0.458
140/300 = 0.466
So start your Base HP around 46% of the 200 total, then go up and down the 200 stat total.
200 * 0.46 = 92. Your remaining points are 108, for 54 each.
Chart:
Our estimate wasn't perfect, but it got it pretty close (HP and defensive point total correlate only roughly). If you had 200 points to allocate on a spread and you wanted the bulkiest pokemon possible, you would use 82/59/59 defenses.
154/305 = 0.504
Including this with our two other examples:
220/480 = 0.458
140/300 = 0.466
82/200 = 0.41
By the way, I know this was tl;dr, but I thought it might be useful. If someone can help me clean it up I'll gladly put it in Contributions + Corrections. Basically all you'd need is an easy way to check Actual HP vs. Actual Defenses with a preset amount of stats to allocate.
Eg:
Total Defensive Base stats to allocate
Find: Actual stats where HP = Defense*2.
Convert into Base stats.
To do this I used a fairly simple method using Base stats in increments of 10. For each 10 Base increment in HP, 5 was removed from defense and special defense.
I used 100/100/100 for my initial base.
BHP = Base HP
BDef = Base Defense
BSD = Base SD
AHP = Actual HP
ADef = Actual Defense
ASD = Actual SD
Total = Total Defenses
Difference = Difference from previous number.
Code:
[B]No EV's Table (0/0/0)[/B]
BHP BDEF BSD Total AHP ADef ASD Total Diff.
100 100 100 300 341 236 236 80476
10 145 145 300 161 326 326 52486
20 140 140 300 181 316 316 57196 4710
30 135 135 300 201 306 306 61506 4310
40 130 130 300 221 296 296 65416 3910
50 125 125 300 241 286 286 68926 3510
60 120 120 300 261 276 276 72036 3110
70 115 115 300 281 266 266 74746 2710
80 110 110 300 301 256 256 77056 2310
90 105 105 300 321 246 246 78966 1910
100 100 100 300 341 236 236 80476 1510
110 95 95 300 361 226 226 81586 1110
120 90 90 300 381 216 216 82296 710
130 85 85 300 401 206 206 82606 310
[B]140 80 80 300 421 196 196 82516 -90[/B]
150 75 75 300 441 186 186 82026 -490
160 70 70 300 461 176 176 81136 -890
170 65 65 300 481 166 166 79846 -1290
180 60 60 300 501 156 156 78156 -1690
190 55 55 300 521 146 146 76066 -2090
200 50 50 300 541 136 136 73576 -2490
210 45 45 300 561 126 126 70686 -2890
220 40 40 300 581 116 116 67396 -3290
230 35 35 300 601 106 106 63706 -3690
240 30 30 300 621 96 96 59616 -4090
250 25 25 300 641 86 86 55126 -4490
Using 300 Base stats in Defenses, The point where diminishing returns occurs between 130/85/85 and 140/80/80.
There is basically no difference in a split EV's table with 252/124/124. In fact, diminishing returns appears to happen sooner by a small margin.
Code:
[B]Split EV Table (252/124/124)[/B]
BHP BDEF BSD Total AHP Adef ASD Total Diff.
100 100 100 300 404 267 267 107868
10 145 145 300 224 357 357 79968
20 140 140 300 244 347 347 84668 4700
30 135 135 300 264 337 337 88968 4300
40 130 130 300 284 327 327 92868 3900
50 125 125 300 304 317 317 96368 3500
60 120 120 300 324 307 307 99468 3100
70 115 115 300 344 297 297 102168 2700
80 110 110 300 364 287 287 104468 2300
90 105 105 300 384 277 277 106368 1900
100 100 100 300 404 267 267 107868 1500
110 95 95 300 424 257 257 108968 1100
120 90 90 300 444 247 247 109668 700
130 85 85 300 464 237 237 109968 300
[B]140 80 80 300 484 227 227 109868 -100[/B]
150 75 75 300 504 217 217 109368 -500
160 70 70 300 524 207 207 108468 -900
170 65 65 300 544 197 197 107168 -1300
180 60 60 300 564 187 187 105468 -1700
190 55 55 300 584 177 177 103368 -2100
200 50 50 300 604 167 167 100868 -2500
210 45 45 300 624 157 157 97968 -2900
220 40 40 300 644 147 147 94668 -3300
230 35 35 300 664 137 137 90968 -3700
240 30 30 300 684 127 127 86868 -4100
250 25 25 300 704 117 117 82368 -4500
The point of diminishing returns is unchanged. It is still between 130/85/85 and 140/80/80.
Now for a fun experiment. Shuckle has the most base defenses invested of any pokemon, at a staggering 480.
Code:
[B]Shuckle No EVs Table (0/0/0)[/B]
BHP BDEF BSD Total AHP Adef ASD Total Diff.
20 230 230 480 181 496 496 89776
10 235 235 480 161 506 506 81466
20 230 230 480 181 496 496 89776 8310
30 225 225 480 201 486 486 97686 7910
40 220 220 480 221 476 476 105196 7510
50 215 215 480 241 466 466 112306 7110
60 210 210 480 261 456 456 119016 6710
70 205 205 480 281 446 446 125326 6310
80 200 200 480 301 436 436 131236 5910
90 195 195 480 321 426 426 136746 5510
100 190 190 480 341 416 416 141856 5110
110 185 185 480 361 406 406 146566 4710
120 180 180 480 381 396 396 150876 4310
130 175 175 480 401 386 386 154786 3910
140 170 170 480 421 376 376 158296 3510
150 165 165 480 441 366 366 161406 3110
160 160 160 480 461 356 356 164116 2710
170 155 155 480 481 346 346 166426 2310
180 150 150 480 501 336 336 168336 1910
190 145 145 480 521 326 326 169846 1510
200 140 140 480 541 316 316 170956 1110
210 135 135 480 561 306 306 171666 710
220 130 130 480 581 296 296 171976 310
[B]230 125 125 480 601 286 286 171886 -90[/B]
240 120 120 480 621 276 276 171396 -490
250 115 115 480 641 266 266 170506 -890
Shuckle doesn't get diminishing returns on defenses until it hits 230 Base HP, with no EV investment.
Code:
[B]Shuckle Split EVs Table (252/124/124)[/B]
BHP BDEF BSD Total AHP Adef ASD Total Diff.
20 230 230 480 244 527 527 128588
10 235 235 480 224 537 537 120288
20 230 230 480 244 527 527 128588 8300
30 225 225 480 264 517 517 136488 7900
40 220 220 480 284 507 507 143988 7500
50 215 215 480 304 497 497 151088 7100
60 210 210 480 324 487 487 157788 6700
70 205 205 480 344 477 477 164088 6300
80 200 200 480 364 467 467 169988 5900
90 195 195 480 384 457 457 175488 5500
100 190 190 480 404 447 447 180588 5100
110 185 185 480 424 437 437 185288 4700
120 180 180 480 444 427 427 189588 4300
130 175 175 480 464 417 417 193488 3900
140 170 170 480 484 407 407 196988 3500
150 165 165 480 504 397 397 200088 3100
160 160 160 480 524 387 387 202788 2700
170 155 155 480 544 377 377 205088 2300
180 150 150 480 564 367 367 206988 1900
190 145 145 480 584 357 357 208488 1500
200 140 140 480 604 347 347 209588 1100
210 135 135 480 624 337 337 210288 700
220 130 130 480 644 327 327 210588 300
[B]230 125 125 480 664 317 317 210488 -100[/B]
240 120 120 480 684 307 307 209988 -500
250 115 115 480 704 297 297 209088 -900
It's the same number here, but notice the drastic difference in defense numbers between the two tables.
To get a more concrete number, I'll use the two from my experiments in relation to where there defenses are.
These are the diminishing returns numbers for actual stats:
196/421 = 0.608
286/601 = 0.467
These are the numbers that do not yet have diminishing returns:
206/401 = 0.514
296/581 = 0.509
My Hypothesis would be: Whenever you are creating or evaluating a defensive spread with a limited amount of points available for defenses, maximum durability is achieved when actual (not base) defenses are roughly 50% of actual (not base) HP.
In other words, the best overall defensive spread when you have 300 preset points to alocate is (roughly) 140/80/80.
If you wanted the bulkiest possible pokemon with only 200 points to allocate, start with the total Base Stats Vs. Base HP stats provided here.
220/480 = 0.458
140/300 = 0.466
So start your Base HP around 46% of the 200 total, then go up and down the 200 stat total.
200 * 0.46 = 92. Your remaining points are 108, for 54 each.
Chart:
Code:
[B]Hypothesis Test No EVs[/B]
BHP BDEF BSD Total AHP Adef ASD Total Diff.
92 54 54 200 325 144 144 46800
100 50 50 200 341 136 136 46376
98 51 51 200 337 138 138 46506 130
96 52 52 200 333 140 140 46620 114
94 53 53 200 329 142 142 46718 98
92 54 54 200 325 144 144 46800 82
90 55 55 200 321 146 146 46866 66
88 56 56 200 317 148 148 46916 50
86 57 57 200 313 150 150 46950 34
84 58 58 200 309 152 152 46968 18
[B]82 59 59 200 305 154 154 46970 2[/B]
80 60 60 200 301 156 156 46956 -14
78 61 61 200 297 158 158 46926 -30
Our estimate wasn't perfect, but it got it pretty close (HP and defensive point total correlate only roughly). If you had 200 points to allocate on a spread and you wanted the bulkiest pokemon possible, you would use 82/59/59 defenses.
154/305 = 0.504
Including this with our two other examples:
220/480 = 0.458
140/300 = 0.466
82/200 = 0.41
By the way, I know this was tl;dr, but I thought it might be useful. If someone can help me clean it up I'll gladly put it in Contributions + Corrections. Basically all you'd need is an easy way to check Actual HP vs. Actual Defenses with a preset amount of stats to allocate.
Eg:
Total Defensive Base stats to allocate
Find: Actual stats where HP = Defense*2.
Convert into Base stats.