Answer

Verified

486k+ views

Hint: In this question it is given that A’s skill is to B’s as 3 to 2, this means that A’s chances of winning a game is $\dfrac{3}{5}$ using the basic concept of probability that ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$, similar we can find B’s chances of winning a game. Use this concept along with the binomial theorem of probability to reach the answer.

Complete step-by-step answer:

It is given that in a certain game A’s skill is to B’s as 3 to 2……………….. (1)

Using ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$……………….. (2)

Let p be the probability of A winning a game.

So, the chance of winning by A (i.e. probability to win by A) using equation (1) and equation (2)

$ \Rightarrow p = \dfrac{3}{{3 + 2}} = \dfrac{3}{5}$.

Let q be the probability of B winning a game. So the probability to win by B using equation (1) and equation (2)

$ \Rightarrow q = \dfrac{2}{{3 + 2}} = \dfrac{2}{5}$

Now we have to find out the chance of A winning 3 games at least out of 5.

Now we use binomial theorem to calculate the required probability.

$ \Rightarrow {}^n{C_r}{\left( p \right)^r}{\left( q \right)^{n - r}}$

Where, n = number of times the game played.

r = number of times A wins.

p = Probability to win by A.

q = Probability to win by B, or losing probability of A.

Now it is given A win at least 3 games (i.e. A win 3 games or 4 games or 5 games)

So, the required probability (${P_A}$) of winning 3 games at least out of 5 is

${P_A} = {}^5{C_3}{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^{5 - 3}} + {}^5{C_4}{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^{5 - 4}} + {}^5{C_5}{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^{5 - 5}}$…………… (3)

Now as we know ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

$

\Rightarrow {}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5.4.3!}}{{3!\left( {2 \times 1} \right)}} = 10 \\

\Rightarrow {}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!\left( 1 \right)}} = 5 \\

\Rightarrow {}^5{C_5} = \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}} = \dfrac{{5!}}{{5!\left( {0!} \right)}} = \dfrac{{5!}}{{5!\left( 1 \right)}} = 1 \\

$

So substitute these values in equation (3) we have

${P_A} = 10{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^2} + 5{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^1} + 1{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^0}$

Now simplify the above equation we have,

${P_A} = 10\left( {\dfrac{{27}}{{125}}} \right)\left( {\dfrac{4}{{25}}} \right) + 5\left( {\dfrac{{81}}{{625}}} \right)\left( {\dfrac{2}{5}} \right) + 1\left( {\dfrac{{243}}{{3125}}} \right)\left( 1 \right)$

${P_A} = \dfrac{{1080}}{{3125}} + \dfrac{{810}}{{3125}} + \dfrac{{243}}{{3125}}$

Now add all these terms we have,

${P_A} = \dfrac{{2133}}{{3125}}$

So, this is the required probability of A winning 3 games at least out of 5.

So, this is the required answer.

Note: Whenever we face such types of problems the key point is to take out individual probabilities of winning a specific game then whenever we come across words in questions like at least or at most involving probability then we always have to use the binomial probability theorem. This will help you get on the right track to reach the answer.

Complete step-by-step answer:

It is given that in a certain game A’s skill is to B’s as 3 to 2……………….. (1)

Using ${\text{Probability = }}\dfrac{{{\text{Favorable chances}}}}{{{\text{Total chances}}}}$……………….. (2)

Let p be the probability of A winning a game.

So, the chance of winning by A (i.e. probability to win by A) using equation (1) and equation (2)

$ \Rightarrow p = \dfrac{3}{{3 + 2}} = \dfrac{3}{5}$.

Let q be the probability of B winning a game. So the probability to win by B using equation (1) and equation (2)

$ \Rightarrow q = \dfrac{2}{{3 + 2}} = \dfrac{2}{5}$

Now we have to find out the chance of A winning 3 games at least out of 5.

Now we use binomial theorem to calculate the required probability.

$ \Rightarrow {}^n{C_r}{\left( p \right)^r}{\left( q \right)^{n - r}}$

Where, n = number of times the game played.

r = number of times A wins.

p = Probability to win by A.

q = Probability to win by B, or losing probability of A.

Now it is given A win at least 3 games (i.e. A win 3 games or 4 games or 5 games)

So, the required probability (${P_A}$) of winning 3 games at least out of 5 is

${P_A} = {}^5{C_3}{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^{5 - 3}} + {}^5{C_4}{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^{5 - 4}} + {}^5{C_5}{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^{5 - 5}}$…………… (3)

Now as we know ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

$

\Rightarrow {}^5{C_3} = \dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} = \dfrac{{5.4.3!}}{{3!\left( {2 \times 1} \right)}} = 10 \\

\Rightarrow {}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!\left( 1 \right)}} = 5 \\

\Rightarrow {}^5{C_5} = \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}} = \dfrac{{5!}}{{5!\left( {0!} \right)}} = \dfrac{{5!}}{{5!\left( 1 \right)}} = 1 \\

$

So substitute these values in equation (3) we have

${P_A} = 10{\left( {\dfrac{3}{5}} \right)^3}{\left( {\dfrac{2}{5}} \right)^2} + 5{\left( {\dfrac{3}{5}} \right)^4}{\left( {\dfrac{2}{5}} \right)^1} + 1{\left( {\dfrac{3}{5}} \right)^5}{\left( {\dfrac{2}{5}} \right)^0}$

Now simplify the above equation we have,

${P_A} = 10\left( {\dfrac{{27}}{{125}}} \right)\left( {\dfrac{4}{{25}}} \right) + 5\left( {\dfrac{{81}}{{625}}} \right)\left( {\dfrac{2}{5}} \right) + 1\left( {\dfrac{{243}}{{3125}}} \right)\left( 1 \right)$

${P_A} = \dfrac{{1080}}{{3125}} + \dfrac{{810}}{{3125}} + \dfrac{{243}}{{3125}}$

Now add all these terms we have,

${P_A} = \dfrac{{2133}}{{3125}}$

So, this is the required probability of A winning 3 games at least out of 5.

So, this is the required answer.

Note: Whenever we face such types of problems the key point is to take out individual probabilities of winning a specific game then whenever we come across words in questions like at least or at most involving probability then we always have to use the binomial probability theorem. This will help you get on the right track to reach the answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Write the difference between order and molecularity class 11 maths CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Discuss the main reasons for poverty in India

What is Commercial Farming ? What are its types ? Explain them with Examples